AD 737261 QE/OH TM 62-72 TABLES OF THE HYPERGEOMETRIC DISTRIBUTION FUNCTIONS COPY NO. 58 3 JANUARY 1963 BY HAROLD T. OHARA MAZIE S. AKANA (STATISTICS DIVISION) THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLINITED. QUALITY EVALUATION LABORATORY UNITED STATES NAVAL AMMUNITION DEPOT OAHU, HAWAII # DISCLAIMER NOTICE THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. #### FOREWORD 4 P P I 1 I 1 1 Tables and graphs based on the hypergeometric distribution are presented for use in determining the confidence interval of the sample estimate of the number of defectives in a finite population. Similarly, the sample size can be determined which would give a certain quality level as the lower bound for a selected confidence level. The hypergeometric distribution is particularly suited for small populations (less than 1,000) where a saving in the sample size is desired even at the expense of some loss in precision of the estimate. The tables of point and cumulative probabilities are tabulations of selected sample and population combinations. The selected sample sizes range from 4 to 40 and the population, from 50 to 1,000. For those that have access to an IBM 1401 Model B-4, 8K memory, the computer program is included as Appendix D. The authors wish to express their appreciation to A. Ohta and K. Thornton for editing and assembly of the tables and to J. Mitchell for supervising the computer tabulation. | | | CONTENTS | |--------------|------|---| | [l | page | | | | 1 | INTRODUCTION | | (I | 1 | APPROACH TO THE PROBLEM | | [I | 9 | RESULTS | | _ | 11 | REFERENCES | | | A-1 | APPENDIX A: TABLES OF POPULATION DEFECTIVES
FOR CERTAIN CONFIDENCE LEVELS | | [[| B-1 | APPENDIX B: GRAPHS OF PERCENT OPERABILITY | | [L | | VERSUS FIXED SAMPLE SIZES FOR SELECTED POPULATIONS | | | C-1 | APPENDIX C: SAMPLE OF COMPUTER PRINT-OUT OF PROBABILITIES | | U | D-1 | APPENDIX D: SYMBOLIC LANGUAGE PROGRAM FOR IBM 1401 | | | | 1LLUSTRATIONS | | | page | figure | | · ~.
: ~. | 6 | 1 Change in shape of generalized point probability curves due to the number of defectives present in a sample | | I | • | | | · N | 8 | 2 Sample size versus operability | | 4 | | | #### INTRODUCTION I I In quality evaluation, the basic question is: "What is the quality level of the stockpile in question?" More often this question is put in the following form: "How large must the sample be to give a certain level of assurance that the stockpile is no worse than X% defective if no defectives are observed in the sample?" In this latter form, the requirement is not for a precise estimate of the stockpile quality level but rather some assurance that the quality is not below a specified level. In this situation, the implication is that there is some willingness to sacrifice some precision if a reduction in the sample size required can be realized. Most approaches until recently have been based on the binomial distribution. But in cases where the stockpile is small, say less than 500, and the unit item cost high, the binomial has not been a very satisfactory model. As is normally the case in quality evaluation where the populations are small and sampling is without replacement, it appeared that the hypergeometric distribution was the more realistic model to use, but until the advent of the modern-day computer, the formidable task of calculating the probabilities on a desk calculator prevented its use. Of primary concern to the Oahu Laboratory is coping with small stockpiles of high unit cost weapons. What is desired is a method whereby stockpiles of extremely high or low quality (percent operability) can be readily detected using a minimal size sample. For stockpiles falling in between, additional samples must be tested if greater precision in the quality estimates is desired. As a result, a study was made of a two-stage sampling method based on the hypergeometric distribution and using 95% operability at the 90% confidence level as the lower bound for "good" stockpiles. #### APPROACH TO THE PROBLEM Based on the hypergeometric distribution two main mathematical approaches are proposed. # Approach I The first approach may be stated in this mathematical form (1) $$P(D|S, N, M) = \frac{\binom{M}{D}\binom{N-M}{S-D}}{\binom{N}{S}} = \frac{M!}{(M-D)! \ D!} \frac{(N-M)!}{(N-M-S+D)! \ (S-D)!}$$ where: S = Sample size N = Population sizeD = Sample defectivesM = Population defectives and obviously S-D = Sample Non-defectives N-M = Population Non-defectives Equation (1) states that the probability of obtaining D defectives in a sample of size S, given M defectives in a population of N items, is equal to the number of ways of drawing D out of M items times the number of ways of drawing S-D out of N-M items divided by the number of ways of drawing S out of N items. In stockpile quality estimation it is desired to find the confidence interval for the number of defectives in a finite population. Since M is not known, an upper bound on the true M is sought. Call this bound M_U . First assume that $M_U = M_1$. Then look up in an appropriate table (reference (4)) the sum of the probabilities of drawing D or less defectives in the sample. If this sum is less than eG, the significance level (e.g. . .10), the proper M_U should be less than M_1 . Then choose $M_U = M_2$, $M_2 < M_1$ and repeat the above procedure until $$\sum_{D_i=0}^{D} F(D_i \mid s, N, M_{u}-1) \leq \alpha \leq \sum_{D_i=0}^{D} P(D_i \mid s, N, M_{u})$$ Then select M_u -1 or M_u as the upper bound depending on which corresponding sum is closer to C. The maximum likelihood value is given as $\stackrel{\wedge}{M} \leq \frac{D}{S} \{N+1\}$ (reference 1, p. 294) or more completely $\frac{D}{S}$ (N+1) $-1 \le \frac{A}{M} \le \frac{D}{S}$ (N+1) (reference 3, p. 3). References for this approach are found in (1), (2), and (3). # Approach II 7 7 T The approach followed is to assume that populations with M defectives where M ranges from D to (N-S+D) are tested randomly. In this case $P(D|S,N,M_1)$ is related to $P(D|S,N,M_D)$, $P(D|S,N,M_{D+1})$, $P(D|S,N,M_{N-S+D})$. The probability of the observed sample coming from a population with M_i defectives is given as: (2) $$P(M_i \mid D, S, N) = \frac{P(D \mid S, N, M_i)}{N-S+D} \quad \text{where, } D \leq M_i \leq N-S+D$$ $$\sum_{M=D} P(D \mid S, N, M)$$ Equation (2) states that if, from a population of size N, a sample S is drawn and D defectives are observed, the probability of M_i defectives in the population is equal to the ratio of the probability of that set of M_i , N, S, and D to the total sets of N, M_j , S, D where M_j is allowed to range from D to (N-S+D). The number of defectives in the population cannot be less than the number of defectives observed in the sample nor greater than the difference between the total population N, and (S-D) (sample non-defectives). The denominator $\sum_{M_i = D}^{N-S+D} P(D|S, N, M_j)$ can be shown equal to $\frac{N+1}{S+1}$, a constant. This makes it valid to tabulate P(D S, N, M) instead of P(M S, N, D) for checking purposes. In the form of equation (1), equation (2) becomes the derived equation: (3) $$P(M \mid D, S, N) = \frac{\binom{M}{D} \binom{N-M}{S-D}}{\binom{N+1}{S+1}} = \frac{S+1}{N+1} P(D \mid S, N, M)$$ For brevity, let $P(M_i \mid D, S, N) = P(M)$. Then these recurrence relationships are very useful for computational purposes: (4) $$\frac{P(M)}{P(M+1)} = \frac{(M-D+1) (N-M)}{(M+1) (N-M-S+D)}$$ -1 **[** 4 4 1 1 1 P P (5) $$\frac{P(M)}{P(M-1)} = \frac{(M) (N-M-S+D+1)}{(M-D) (N-M+1)}$$ From (4) and (5) it can be seen that P(M) > P(M+1), where they exist, as long as (M-D+1) (N-M) > (M+1) (N-M-S+D) and similarly P(M) > P(M-1) as long as (M) (N-M-S+D+1) > (M-D) (N-M+1). It follows that the maximum likelihood integer M may be expressed as: (6) $$\frac{D}{S}$$ (N+1) $-1 \le M \le \frac{D}{S}$ (N+1) There will be two M values where the extreme right and left expressions are: (a) integers and (b) exist. Since equations (4), (5) and (6) show that the probabilities decrease from the maximum likelihood value, serial computations should start with M as shown below in equations (72) and (7b). (Note: M differs from that in [Reference 1] and [Reference 3].) (7a) $$P(M) \ge P(M-1) \ge P(M-2) \ge \dots P(M-k)$$ (7b) $$P(M) \ge P(M+1) \ge P(M+2) \ge \dots P(M+i)$$ (7c) $$\sum_{\mathbf{R}}^{\mathbf{T}} \mathbf{P}(\mathbf{M}_j) = 1 - \infty$$ If $P(M+i) \ge P(M-k)$, P(M+i) is added to $\sum P(M_j)$ which starts with P(M); otherwise P(M-k) is added. Equation (7c) states that R to T is the range of M defectives in the population when the sum of all the higher probabilities is equal to $1-\alpha_4$ the confidence level. (8) $$\sum_{D}^{L} P(M_j) = 1-\infty$$, 4 4 4 4 4 L being determined by computations. Equation (8) gives the upper bound of M_j or the so-called one-tail test for small values of D. For D = 0 and D = S, the one-tail and two-tail tests coincide. For most values of D, the probabilities form an asymmetric as well as a discrete distribution. The asymmetries are illustrated in figure 1 where curved lines are drawn through point probabilities for N = 50, S = 8, and D = 0 to 4. Approaches I and II may perhaps be better illustrated by the use of black and white missiles. There are six missiles in the population - four white and two black. The three possible outcomes in a sample of three are labeled (a), (b), and (c); the chance or probability of drawing any one is determined by equation (1). Approach II. In stockpile quality evaluation it is desirable to take approach II which is the more realistic statistical model. In this case the population is estimated from a known sample. FIGURE 1. CHANGE IN SHAPE OF GENERALIZED POINT PROBABILITY CURVES DUE TO THE NUMBER OF DEFECTIVES
PRESENT IN A SAMPLE. A PROPERTY . . Here, from a population of six, is a sample of three wherein two white and one black missiles were noted. The four possible populations from which this sample could have been drawn are: (d), (e), (f), and (g). The chances or probability of any one of the populations being the one from which this particular sample is drawn is determined by equation (3). ### Symmetries 4 4 l I Since $\frac{S+1}{N+1}$ P(D|S,N,M) = P(M|S,N,D) by equation (3), symmetries given by Lieberman and Owen (Reference 4) for P(D|S,N,M) apply in many instances where S and N are fixed. (9) $$P(M = M_1 | D_1, s, N) = P(M = N - M_1 | s, s - D_1, N)$$ (10) $$\sum_{M=A}^{B}$$ $P(M|S,D=D_1, N) = \sum_{M=N-A}^{N-B}$ $P(M|S,D=S-D_1, N)$ Equations (9) and (10) show that tables need only involve half the sample size. Population defectives M given and sample size S unknown (11) $$P(M|D,S,N) = P(S|D,M,N)$$ (12) $$\sum_{S=D}^{N-M+D} P(S|D, M, N) = \frac{N+1}{M+1}$$ Equations (11) and (12) give the basic equations for the problem of sample size estimation when N, D, and M are known. Any table for M defectives may be used by interchanging S for M. #### Two Stage Sampling Out of a total allowable sample of size S from a population N, an initial sample S_1 is tested and D_1 defectives are found. By means of a table similar to Appendix C, it is found that x defectives gives the desired percent operability and y defectives (y > x) do not. If $D_1 \le x$ then the lot is accepted. If $D_1 \ge y$, the lot is rejected. If $x < D_1 < y$, then the remainder of S, called S_2 , is sequentially tested. If at any time a total of $D_1 + C$ defectives are found, the lot is rejected, since the total sample S would have at least $D_1 + C$ defectives. If the total sample S is tested and $(D_1 + C - 1)$ defectives are found, the lot is accepted. $D_1 + C$ is determined from the probability table for N, S, and M, the number of defectives that will be tolerated. #### Best Sample Size S for a Given D 1 For some values of D sample defectives, a large sample size S is required to reach the desired percent operability for a given confidence level. In these cases, the percent operability should perhaps be lowered to the point where the additional sample units give less than some preselected gain value in percent operability. This is illustrated in figure 2, which is patterned after the graphs in Appendix B. FIGURE 2. SAMPLE SIZE VERSUS OPERABILITY. Here for D = a, an additional sample of 10, from 30 to 40 will result in a very small gain in percent operability and therefore, S = 30 may be the better choice of sample size. #### RESULTS 4 P s A 1 #### Tables and Graphs The table and graphs in Appendices A and B are useful as "quick look" references. The table gives the range for population defectives for certain fixed confidence levels. The graphs give different population lines in terms of percent operability versus fixed sample sizes. Smooth curves are drawn through interpolated points. Only the lower percent operability values are plotted for clarity. ## Print-out of Probabilities A sample of the computer print-out of probabilities is given in Appendix C. Point probabilities and sums for P(D|S,N,M) were tabulated instead of P(M|D,S,N) for purposes of checking with other tables. #### The abbreviations are: S = Sample size N = Population size D = Sample defective M = Population defective P = P(D|S, N, M) $SUM = \sum_{M=R}^{T} P(D|S, N, M)$ where the sum contains the highest probabilities from R to T $$M = R$$ $$T$$ $$CONF = \sum_{R} P(D|S, N, M)$$ $$R$$ $$N - S + D$$ $$D$$ $$P(D|S, N, M)$$ $$M = D$$ LEFT SUM = Sum of decreasing probabilities to the left of maximum likelihood RIGHT SUM * Sum of decreasing probabilities to the right of maximum likelihood A one-tail test is possible from this type of table. Assume 1-62 is the confidence level, $Q = \sum_{M=D}^{N-S+D} P(D[S, M])$, and $R = \sum_{M=M+1}^{N-S+D} P(D|S, N, M).$ Compute OCQ and subtract from R. Then trace back in the "Right sum" column until a value just exceeding R - OCQ is found. The value of upper M in the same row is the one-tail upper bound on the population defectives. # Program for the Hypergeometric Series The symbolic language program developed for the IBM 1401 computer, Mod B4, is given in Appendix D. Accuracy in computation of factorials was mainly accomplished by having the decision to multiply by a number from the numerator or divide by a number from the denominator depend upon the number of leading zeros resulting from the previous calculation. Individual probabilities were then usually accurate to ten places and sums of probabilities to eight. The abbreviations used in the print-out in Appendix D are: PG LIN * Page and line identification CT = Count for instruction or reserved storage OP = Operation instruction A OPERAND - A or I address of instruction B OPERAND = B address of instruction D = D character modification of the basic instruction #### REFERENCES 4 I ŧ - Deming, William Edwards, Some Theory of Sampling, New York, John Wiley and Sons, 1950, p 294 - [2] Katz, Leo, Confidence Intervals for the Number Showing a Certain Characteristic in a Population When Sampling is Without Replacement Journal of the American Statistical Association v. 48 (1953), 256-261 - Odell, Patrick L., Tables and Graphs for Determining an Upper <u>Confidence Bound on the Number of Defectives in a Finite</u> Population (U) - U. S. Naval Nuclear Ordnance Evaluation Unit, Albuquerque, New Mexico, 1960, p. 1 - [4] Lieberman, G. J. and Owen, D. B., Tables of the Hypergeometric Probability Distribution, Stanford University Press, 1961. | | WE Con | Massa
le | We co | didace | | | | WK Co | Adones
is | 99% Cur
Lov | didence | Γ | | | 995 Co. | who | Mi Ca | | |---------------------|-------------------------|--|---|--|--|----|----------|--|---|---|---|----------|----|---|---|--|---|---| | *** | M _L | M ₄ | <u> </u> | M ₄ | <u> </u> | ÷ | <u> </u> | M, | M ₀ | M _k | м, | <u>"</u> | - | | М. | Mu | М, | _ | | | 1 4 | 17
34
31
37 | 12 | 13
20
27
33
36 | " | • | 1 2 3 | 2
8
17
26 | 36
90
63
74 | 1
6
13
23 | 27
42
16
67
78 | | 12 | 3 | 16
25 | 25
42
97
74
87 | 1
6
13
21 | 1 | | 10 0
1
2
3 | 0
1
3
7
11 | 8
14
20
24
31 | . ; | 10
17
23
26
32 | | 10 | 1 2 3 4 | 4
13
20 | 18
31
42
53
63 | 1
5
16
17 | 22
36
47
97
67 | | 16 | 1 2 3 | :
:
:
::
:: | 36
64
61
73 | 1
5
10
17 | 4 | | 12 0
1
2
3 | 1 3 | 7
13
17
22
24 | 1 2 3 | 9
14
19
24
20 | | 12 | 1 2 3 | 1
5
10
16 | 13
25
36
45
94 | | 17
29
40
80
80 | | 17 | 1 2 3 | 1
5
11
17 | 18
29
43
56 | •
1
4
• | 1 | | | 0
1
5
10 | 12
21
30
37 | 14 | 16
34
33
40 | : » | • | 1 2 3 | 0
2
10
19 | 84
64
61
76 | #
1
7
16
87 | 33
96
67
81 | | • | • | #
3
14
29 | 37
66
98
116
134 | #
2
11
23 | 1 | | 10 0 | 1
4 | 18
17
25
31 | •
!
3
7 | 13
20
87
34 | | 10 | 1 1 2 | *
2
7 | 21
37
90
64
76 | 13 | 27
42
91 | | 10 | • | # # # # # # # # # # # # # # # # # # # | 35
36
77
96
114 | #
: | 1 | | 12 1 | 12
6
1
3
7 | 37
3
15
21
27 | 11 | 11
17
26
29 | | 12 | • | 24
0
1
6
12 | 76
19
31
43
66 | #
1
1
10
16 | 23
34
67
48
70 | | 12 | • | į | 114
26
47
44
43
17 | į | | | | 10
0
1
4
13 | 115
25
26
26 | 9
0
1
5
20 | 34
39
39
47 | | 15 | • | 19 | #
25
26
46
46 | 16 | 19
38
41 | | 15 | • | 16
29
8
1
7 | 99
23
39
44
46
61 | 15
34
0
1
5 | | | 10 | 18
1
1
-5 | 44
51
12
27
29 | į | 15
26
33
40
46 | | 17 | | iš | 13
22
32 | 13
1
3
7 | 27
27
26
46
46 | | 17 | • | 11
0
1 | 85
25
49
41
73 | 11
19 | | | ** • | 14
0
1
4 | 43
10
17
25 | 0
12
0
1 | 13
28
28
34- | | • | • | 13
0
3 | ## ## ## ## ## ## ## ## ## ## ## ## ## | 11
0
2
0
10
11 | 12 .
16 .
18 .
18 . | | * | • | 12
17 | 73
17
39
42
50 | 16
16
0
1 | | | - : | 12 | 31
20
17 | 10 | 31-
21 | | le | : | 32
34 | 96
104
25 | 97
79 | 107 | <u> </u> | | : | 50
16 | | 14 | | | | 2
7
13
81 | #
#
| 1
9
11
16 | 33
64
54
42 | | | 1 2 3 | 17
27 | 43
97
74
86 | 1
6
14
23 | 32
30
64
81
34 | | • | 1 2 3 | 3
16
33
91 | 44
14
165
187
160 | 11
24
43 | 1 | | | 1
3
36
36 | 14
24
33
42
50 | 14 | 16
26
37
46
53 | | 52
 1 2 3 | 1
7
14
32 | 21
97
51
64
76 | 1
1
1
1 | 27
43
87
70
82 | | 10 | 1 2 3 | 12
26
26 | 37
62
86
107
137 | *************************************** | 1 | | 12 1 | 13 | 12
20
20
24
43 | 1
3
7
11 | 15
24
22
27
44 | | 15 | 3 | 1
6
12
17 | 17
30
42
93
63 | 1 | 12
35
47
50
67 | | 12 | 1 2 3 | 2
10
20
31 | 31
54
76
110 | 1
7
16 | į | | 2 3 | 2
7
15 | 19
19
19
19
19
19
10
10
10
10
10
10
10
10
10
10
10
10
10 | 1 1 3 7 7 11 1 6 12 22 22 6 1 6 6 6 6 6 1 5 1 5 1 5 1 5 1 5 1 5 1 | 15
12
17
10
10
17
10
10
11
11
11
11
11
11
11
11
11
11
11 | | LT | 1 2 3 | 0
1
5
10
13
0
12
12
26 | 18
24
27
40
54
54
69
61
161 | 1 4 4 9 15 16 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | 121 141 141 141 141 141 141 141 141 141 | | 15 | 1 2 3 | 0
20
20
30
30
30
40
20
40
20
40
20
40
20
40
40
40
40
40
40
40
40
40
40
40
40
40 | 31
10
10
10
10
10
10
10
10
10
10
10
10
10 | 0
1
7
10
10
10
10
10
11
10
11
10
11
10
11
10
10 | ! | | 10 0
1 | 1
4
21
10 | 14
27 | i | 30
31 | 140 | • | • | .: | 36
69 | : | ** | | 17 | • | : | ** | • | | | | | | 10% Confidence 10% Confidence
Levels Levels | | | | | | Wa Con | ideace | VIII Con | Monce. | | | | TOS Con | Adopto
de | 10% Confidence
Loreis | | | | |------------|-------|-------------|--|-----------------------------------|--------------------------------|--------------------------|--|-----|--------|-----------------------|--------------------------|--------------------------------|--------------------------|---------------------------------------|-----|---------|--------------|--------------------------|--------------------------------|--------------------------|---------------------------------| | H | | D | | rala
M _e | | Level
M | ∟
×, | × | | D ' | ų | M, | - ц | М, | * | | D | M, | M | M | My | | 325 | ٠ | 1 2 3 | 0
4
17
34 | \$6
84
114
143 | | 0
2
13
29 | 42
96
134
153
176 | 275 | 10 | 0
1
2
3 | 4
16
33
53 | 51
84
118
147
174 | 0
2
12
27
45 | 64
99
132
160
104 | 380 | ٠ | 1 2 3 | 4
24
55 | 78
131
179
222
261 | 30
46
76 | 96
190
190
239
275 | | | 10 | 1 2 | 3
13
27 | 41
70
96
120
143 | | 0
2
16
22
37 | 52
61
197
131
152 | | 12 | 1
2
3 | 0
3
13
27
43 | 43
74
162
136
152 | 1
16
22
16 | 95
86
114
149
163 | | 10 | 1 2 3 4 | 4
20
42
67 | 45
101
130
186
223 | 9
3
15
34
97 | 82
127
146
205
237 | | | 12 | 1 2 3 4 | 1
11
22
35 | 36
99
03
104
123 | | 0
2
8
18
20 | 45
70
93
114
133 | | 15 | •
!
2
3 | 0
2
30
21
35 | 35
69
84
104
124 | 1
0
17 | 44
71
95
117
137 | | 12 | 1
2
3 | 4
17
34 | 96
96
139
163
193 | 2
12
27
44 | 70
110
146
270 | | | 15 | 1
2
3 | 8
17
28 | 81
41
44
84
101 | | 1
6
16
23 | 37
54
77
95
112 | | 17 | 0
1
2
3
4 | 0
2
9
16
29 | 32
54
75
96
113 | 0
1
7
15 | 40
64
84
105
123 | | 15 | • À 3 3 4 | 9
3
13
24
42 | 46
76
100
136
161 | 8
9
31
35 | 90
96
121
149
175 | | | 17 | 2 3 | 0
2
7
15
26 | 64
61
71 | | i
6
12
20 | 33
52
70
35
161 | | * | 1
2
3 | 8
8
15 | 27
47
45
82
98 | 1
6
12 | 35
95
74
91
107 | | 17 | 1 2 3 | 6
2
11
23
37 | 61
67
76
121
166 | 31
3
3
6 | 51
61
107
134
186 | | | ** | 1
2
3 | 0
2
4
13
20 | 22
33
6
6 | 1
1
2
7 | 0
1
5
10
17 | ##
##
##
| | 25 | 1 2 3 | 0
1
6
12
19 | 22
37
53
67 | 1
3
10
16 | 20
46
41
75 | | 20 | 1
2
3 | 2
9
19
31 | 36
86
83
186
186 | 1
7
15
24 | 46
70
96
11 t | | | 29 | 1
2
3 | 1
5
10 | 11
4
9 | • | 0
1
4
8
14 | 23
34
49
66
72 | | ** | 1 2 3 | 0
1
3
10
16 | 18
31
44
86 | 1
4
8 | 24
20
51
63
75 | | 25 | 1 2 3 | 8
15
24 | 25
49
60
86
102 | 1
4
12
20 | 36
97
70
91 | | - | • | 1 2 | 111 | 12
13
15 | 8
17
17 | 9
14
18
16 | 69
167
140
170
196 | " | • | 1 2 3 | \$
23
67
77 | 47
112
194
190
234 | 6
3
17
36
65 | 04
139
169
204
· 236 | | 30 | 1 2 3 | 13
20 | 24
41
51
72
87 | 1
3
10
17 | *** | | | 10 | 1 1 | 15
15
26 | 7
10
13 | 16
17
16
14 | 11
24
44 | 98
99
119
146
169 | | 10 | 1 2 3 | 0
4
18
26 | 95
94
129
141
190 | 0
2
13
29 | 70
100
144
175
203 | | 36 | 1 2 3 | 0
1
5
11
17 | 30
35
47
62
75 | 10 | 3
4
9
7 | | | 13 | | : (| 11 | 19
17
18
16
17 | 0
1
9
20
23 | 90
76
164
187
146 | | 12 | • | 0
14
29 | 47
30
111
139
166 | 1
10
25
27 | 40
76
134
198
170 | - | • • | 1 2 3 | 7
20
43
101 | 87
206
206
206
276 | 1
22
51
64 | 11:
17:
22:
27:
31: | | | 15 | | 1 | 1 | 16
16
16 | 1
7
15 | 61
64
86
186
186 | ľ | 16 | 1 2 3 | 2
11
23
34 | 27
64
98
116
- 120 | | 70
104
187
188 | | 10 | 1 2 3 | 13
24
77 | 140
173
215
294 | 3
17
20
64 | 14
19
83 | | | 17 | | 1 | | 17
19
14
14
15 | 1
4
13 | 37
50
77
16
112 | | 17 | 1 2 3 | 10
10
10 | 36
97
63
184
136 | • 1
7 | | | 12 | 1 2 3 | 4
19
30 | | 8
14
31
62 | 11
14
24 | | | - | | | | 86
82
97
74
97 | • 1
• 1
11
19 | ************************************** | | | • !
2
3 | 0
2
0
17
26 | 30
51
71
90
107 | 0
1
6
13 | 30
60
01
79 | | 19 | 3 | 19
19
20 | 90
99
123
186
184 | 11 | 14
14
15
16 | | | M | • | | | 20
24
40
48
21 | 18 | #
#
| | 26 | 1 | 8
13
81 | #
| 1
1
11
17 | 31
60
64
68 | | t7 | 1 2 3 | 3
33
34
48 | | ;
; | H | | - | 196 (| • | | | 44
103
104
104
104 | 9
14
20
91 | 77
118
195
197
819 | | 20 | 1 | 0
1
6
11 | | | # # # # # # # # # # # # # # # # # # # | • | * | 1 | 11 | 120 | 0
1
9
17 | | q | The second | | | |---|----------|--| | S. L. Barrell Every | | | | AND DESCRIPTION OF THE PERSON | | | | THE PERSON NAMED IN | Q | | | State Seattle Many | Q | | | これ 選集して し | Q. | | | The state of the state of | I | | | | I | | | The Market Street | I | | | * 1 · · · · · · · · · · · · · · · · · · | | | | | D | | | | | | | | | | | | R | | | | | _ | WE Co | Aldress
sle | 10% Co | didente
als | | | | WE Con | 4 (do nos | 99% Con | didonce
wis | | | | 10% Ca | ndidence
role | PAS CO | alidense
Sie | |---|----|-------|--|---------------------------------|-------------------------|---|-----|--------
-------------|---------------------------|--------------------------------------|--------------------------|---------------------------------|-----|----------|---------|--------------------------|---------------------------------|---|---| | | | 9 | M, | My | ML | My | N | • | ٥ | M, | My | M | щ | | * | D | M | My | M, | M | | * | 25 | 1 2 3 | 0
2
3
17
28 | 38
96
70
98 | 0
1
6
14
23 | 65
55
56
56
56
56
56
56
56
56
56
56
56
5 | *** | 10 | 1 2 3 | 6
29
66
96 | 93
157
214
270
318 | 8
4
21
46 | 118
103
340
293
339 | 700 | 25 | 1 2 3 | 9
3
14
20
47 | 90
90
137
174
301 | 0
2
10
23
39 | 74
118
197
194
889 | | | * | 1 2 3 | 0
2
7
15
25 | 27
47
45
83
100 | 1
4
12
19 | 35
94
78
93 | | 12 | 1 2 3 | 6
5
23
46
77 | 35
184
233
274 | 9
3
17
30
64 | 101
198
209
255
297 | | 30 | 1 2 3 | 9
3
12
25
37 | 67
84
116
167
176 | .2
9
19
32 | 63
180
133
164
196 | | | 35 | 1 2 3 | 12 20 | 83
86
71
86 | 1
5
10
16 | *** | | 15 | 1 2 3 4 | 4
13
37 | 44
111
154
173
231 | 0
2
13
30
30 | 84
131
174
214
251 | | 35 | 1 2 3 4 | 2
10
21
33 | 41
71
100
127
152 | 1
7
17
27 | 64
65
115
143
146 | | | • | 3 4 | 1
3
11
17 | 26
47
43
75 | 1 | 16
48
97
71
64 | | 17 | 3 4 | 3
16
32
52 | 99
99
139
174
206 | 11
24
43 | 75
110
154
193
224 | | • | 2 3 | 18
29 | 37
63
66
111
134 | 1
7
15
24 | 47
75
102
134
149 | | - | • | | 7
36
70
116 | 100
100
234
206
236 | 4
25
97
74 | 136
198
254
307
363 | | ** | 3 | 13
27
43 | 90
94
119
131
100 | 2
10
22
36 | 65
102
137
168
190 | | 10 | • | 16
75
156
253 | 225
275
314
438
746 | 9
96
125
213 | 262
452
544
404
797 | | | 10 | 3 4 | #
#
| 86
141
196
249
286 | 3
19
43
73 | 104
144
214
263
305 | |
** | 3 4 | 2
10
21
34 | 41
70
97
123
147 | 1
1
17
18 | 53
83
112
136
142 | | 12 | 3 4 | 12
97
110
191 | 186
315
433
640
630 | 91
91
140 | 297
3 y 6
462
506
601 | | | 15 | *** | 4
21
45
70 | 72
121
160
201
201 | 3
15
25
28 | 94
142
167
230
246 | | 36 | 1 2 3 4 | 1
7
10
26 | 34
39
82
194
125 | 1
6
14
23 | 46
70
94
117
130 | | 15 | 1 2 2 4 | 10
46
45
153 | 161
271
374
468
555 | 9
33
75
127 | 304
317
417
513
597 | | | 17 | • | ************************************** | 39
100
130
175
206 | 12
12
27 | 76
110
157
193
224 | | • | 3 4 | ;
;
;
; | 29
51
71
90
100 | 1
6
12
20 | 34
60
82
301
120 | | 17 | 3, | 7
35
74
118 | 234
318
390
463 | 25
39
78 | 167
264
390
430
503 | | | | 1 2 3 | 3
14
29
47 | 83
89
136
156
167 | 2
10
23
39 | 67
106
141
173
204 | _ | | 3 4 | 2
7
13
21 | 24
45
63
79
98 | \$
11
17 | 35
53
72
90
185 | | | 3 | 6
31
64
103 | 201
279
350
417 | 9
4
32
90
95 | 198
230
316
307
-486 | | | • | | 3
12
25
39 | 76
106
136
142 | ;
; | \$6
98
123
151
177 | | 10 | 3 4 | 11
52
107
177 | 197
362
369
446
523 | 4
37
48
147 | 396
478
480 | | | 1 2 3 | 16
16
16
16 | 102
173
341
304
363 | 3
10
42
70 | 131
204
274
238
297 | | | ** | | 19
19
31 | 37
43
67
110
133 |)
7
15
25 | 47
74
100
123
146 | | 12 | 3 4 | 65
134 | 219
203
270
404 | 3
29
66
112 | 148
254
237
418
674 | | M | 1 | 42
67 | 83
148
197
348
297 | 2
14
31
56 | 107
146
825
876
386 | | | | 1 | 16.
28 | 31
53
76
95
113 | 1
6
13
21 | 40
43
95
100
134 | | 15 | 3 4 | 9
7
34
67
100 | 109
261
267
266 | 4
23
55
70 | 141
222
293
396
410 | | | 3 | 4
17
33
14 | 76
130
107
311
252 | 12
12
87 | 90
143
191
234
276 | | | | | ;
;
;
; | 24
44
44
41
77 | 1
5
11
10 | 36
56
73
91
107 | | | 3 4 | #
#
#
#
| 92
156
2)7
272
204 | 3
18
61
67 | 110
104
346
300
362 | | | 1 2 3 4 | 3
14
29
47 | 40
200
344
388
818 | 10
20
20
30 | 70
155
150
150
150
150
150
150
150
150
15 | | | ~ | | 1
1
18
19 | 25
39
36
71
66 | 1000 | ** | | | 3 4 | # 6 77 | 63
141
190
204
201
71 | 3
16
36
66 | 106
166
221
271
310 | | ** | 1 2 3 | 3
12
24
61 | \$3
\$1
184
184
198 | *************************************** | \$7 100 HE | | | _ | • | 10
10
197 | 107
207
310
314 | 45
43
107 | 140
216
201
261
293 | | | i
2
3 | 11 22 | 71
181
160
212
263 | 11
13
20 | 94
143
194
194
194 | | | | | | | | SAMPLE SIZE PERCENT OPERABILITY VERSUS FIXED SAMPLE SIZE .SO CONFIDENCE LEVEL FOR NO DEPERTWE PERCENT OPERABILITY VERSUS FIXED SAMPLE SIZE .00 COMPIDENCE LEVEL FOR ONE SEPECTIVE q I , **[**[**Q** I I ---- PERGENT OPERABILITY VERBUS FIXED SAMPLE SIZE .90 CONFIDENCE LEVEL FOR TWO DEFECTIVES U Q | | | | | | HYPERGE | OMETRIC S | EE 152 | | | | | | |---|--|-----|----------|---|---|---------------------------|--------|----------------------------|----------|----------------------------------|---------------------------------------|--| | 5 | * | ٠ | N | • | SUN | COMP | | 1mt# | RVAL | | LEFT SUM | ASSMT SUM | | • | 50 | • | • | 0.99999999 | 0.00000000 | 0.0780 | | 4 4444 | | | | 0.91999999 | | : | 50
50
54
54
50
50 | : | ž | 0.919999999
0.0449979991 | 1.9199999999
2.7646979591 | 0.2710 | : | 0.0000
0.0000
0.0000 | į | 0.0200
0.0400 | 0.000000000
0.000000000 | 1.764897939 | | ě | 50 | ĕ | š | 0.7744897959 | 3.5393877550 | 0.3449 | 0 | 0.0000 | 3 | 0.0400 | 0.000000000 | 2.539307755 | | • | 50 | • | • | 0.7965757767
0.6467664863 | 4.2479435258 | 0.4144 | 8 | 0.0000 | • | 0.0800
0.100¢ | 0.000000000 | 3.2479639236 | | 7 | 22 | : | : | 0.5894528875 | 5.4843748994 | 0.5376 | ĭ | 0.0000 | - 1 | 0.1200 | 0.000000000 | 4.484374899 | | Ä | 90 | ě | ī | 0.5350642613 | 6.0202431610 | 0.5982 | ŏ | 0.0000 | Ť | 0.1400 | 0.000000000 | 5.0202431610 | | : | 50
50 | • | • | 9.4 940 182370
9.4397307 9 59 | 6.5062613781
6.9459721841 | 0.6378
0.6 007 | • | 8.0000
8.000ú | ÷ | 0.1400
0.1800 | 0.000000000 | 5.906261998
5.945992184 | | • | 50 | | 10 | 0.3940302214 | - 3428224055 | 0.7196 | • | eeod.a | 10 | 0.2000 | 0.000000000 | 6.742022405 | | • | - | • | 11 | 0.3571471993 | 7.6777676048
6.0204863221 | 0.7548 | • | 0.0000 | 11 | 0.2200 | 0.000000000 | 6.6777676040
7.020486322 | | • | 50
50 | : | 13 | 0.3205167173
0.2867781155 | 8.3072644376 | 0.7843
0.8144 | 8 | 0.0000 | 12 | 0.2400
0.2600 | 0.000000000 | 7.307244437 | | i | 50 | ŏ | 14 | 0.2557750759 | 0.5430395136 | 0.8393 | ŏ | 0.0000 | 14 | 0.2900 | 0.000000000 | 7.5630395130 | | • |
50
50 | • | 15 | 0.2273556231 | 8.7903951367 | 0.0618 | | 0.0000 | 15 | 0.3000 | 0.000000000 | 7.790395136 | | • | 50
50 | : | 14 | 0.2013721233
0.1774812852 | 9.9917672600
9.1694483453 | 0.0815 | 0 | 0.0000
0.0000 | 16 | 0.3200 | 0.000000000 | 7.991767268 | | | 50 | ŏ | 10 | 0.1541441597 | 9.3255927051 | 0.9142 | ĕ | 0.0000 | iė | 0.3600 | 0.000000000 | 8.325592705 | | ٠ | 50 | • | 19 | 0.1364261390 | 9.4422198449 | 0.9274 | • | 0.0000 | 34 | 0.3000 | 0.000000000 | 8.462218944 | | : | 50
50 | 0 | 20
21 | 0.11 89969604
0.1031304 99 0 | 7.5812150054
7.6843465045 | 0.7393
0.9494 | 0 | 0.0000 | 50 | 0.4000
0.4200 | 0.000000000
0.000000000 | 8.501215005
8.664346504 | | 4 | 50 | ě | 55 | 0.0889057750 | 9.7732522794 | 0.9581 | ŏ | 0.0000 | 22 | 0.4400 | 0.000000000 | 0.773292279 | | 4 | 50 | • | 53 | 0.0762049500 | 9.8494572296 | 0.9656 | 0 | 0.0000 | 53 | 0.4400 | 0.000000000 | R.849457229 | | : | 50
50 | 0 | 24
25 | 0.0649153278
0.0549283543 | 9.914372557 5
9. 9693009 118 | 0.9719 | 0 | 0.0000 | 24
25 | 0.4000 | 9.000000000 | 0.914372557
0.969300911 | | - | 90 | ŏ | 26 | 0.0461396176 | 10.0154407294 | 0.7017 | ŏ | . 0.0000 | 26 | 0.5200 | 0.000000000 | 9.015440729 | | • | 50 | ā | 27 | 0.0384498480 | 10.0538905775 | 0.7854 | ō | 0.0000 | 27 | 0.5400 | 0.000000000 | 1.053010577 | | • | 50
58 | 0 | 28
29 | 0.0317629179
0.0259878419 | 10.0054534954 | 0.9987
0.9913 | 0 | 0-0000 | 28
29 | 0.5600
0.5800 | 0.000000000 | 9.005653499
9.111641337 | | • | 50 | 0 | 30 | 0.0210377766 | 10.1324791141 | 0.9933 | • | 0.0000 | 30 | 0.4000 | 0.000000000 | 9.132679114 | | 4 | 50 | • | 31 | 0.0168302214 | 10.1495093356 | 0.9990 | | 0.0000 | 31 | 9.4200 | 0.000000000 | 9.149509335 | | * | 50
50 | 8 | 32 | 0.0132870147 | 10.1627963525 | 0.9943 | | 0-0000 | 33 | 0.4400
0.4400 | 0.000000000
9.000000000 | 9.162796352 | | : | 50 | ĕ | 34 | 0.0079027355 | 10.1810334346 | 0.7773 | ä | 0.0000 | 34 | 0.4800 | 0.0000000000 | 9.181033434 | | Ä | 50
50 | ō | 34
35 | 0.0059270516 | 10.1847464843 | 0.9767 | ō | 0.0000 | 35 | 0.7000 | 0.000000000 | 7.186760484 | | • | 30 | 0 | 34
37 | 0.0043445045 | 10.1913009906 | 0.7771 | • | 0.0000 | 36 | 0.7200 | 0.000000000 | 7-191304990 | | : | 50
50 | ÷ | 37
30 | 0.0031046461
0.0021493703 | 10.1944116369 | 0.9794 | ÷ | 0.0000 | 37
38 | 0.7400
0.7 40 0 | 0.000000000 | 9.194411636 | | Ä | 50 | ě | ñ | 0.0014329135 | 10.1979999209 | 0.7798 | ě | 0.0000 | 37 | 0.7800 | 0.000000000 | 9.197993920 | | 4 | 50 | 0 | 40 | 0.0009118541 | 10.1989057750 | 0.9990 | • | 0.0000 | 40 | 0.8000 | 0.000000000 | 9.198905775 | | • | 50 | 0 | 41 | 0.0005471124
0.0003039513 | 10.1994528875
10.1997548388 | 0.9999 | ě | 0.0000 | 42 | 0.8200
0.8400 | 0.000000000 | 9.1794524879
9.179754638 | | 7 | 50
50 | ě | 43 | 0.0001519756 | 10.1999000145 | 0.7777 | š | 0.0000 | 75 | 0.8400 | 9.000000000 | 7.199908014 | | Á | 50 | ō | 44 | 0.0000651324 | 10.1999739470 | 0.9999 | 0 | 0.0000 | 44 | 0.8000
0.9000 | 6.000000000 | 9.1999739470 | | • | 50
50 | 0 | 45 | 0.0000217100 | 10.199995657#
[G.[9099999 | 0.9999
8.9999 | 0 | 0-0000 | 45 | 0.9000
9.9200 | 0.000000000 | 9.199996576
9.19999999 | | 4 | 50 | ĭ | 12 | 0.4395657837 | 0.4395457837 | 0.0430 | • | ****** | ** | 0.7200 | | *********** | | : | 50
50
50 | i | 13 | 0.4344018237 | 0.8781474074 | 0.0430 | 12 | 0-2400
0-2200 | 13 | 0.2400
0.2400 | 0.000000000
0.4365132435 | 0.4386018237 | | | 50 | 1 | 14 | 0.4340425531 | 1.7487234042 | 0.1714 | 11 | 0.2200 | 14 | 0.2000 | 0.4345132435 | 0.87244376 | | 4 | 50 | 1 | 10 | 0.4290050448 | 2.1777290490 | 0.2135 | 10 | 0.2000 | 14 | 0.2000 | 0.8655188884 | 0.8726443766 | | ٠ | 50 | 1 | 15 | 0.4262917933 | 2.4040208423 | 0.2552 | 10 | 0.2000 | 15 | 0.3000 | 0-8655188884 | L.290934170 | | : | 50
50 | - } | 16 | 0.4165 87666 3
0.415 735996 5 | 3.0204079027
3.4365438992 | 0.3348 | • | 0-1800
0-1800 | 15 | 0.3000 | 1-2021039407 | 1.278736178 | | 4 | 50 | i | 17 | 0.4027442466 | 3.8390001436 | 0.3743 | ij | 0.1800 | 17 | 9. 3400 | 1.2021059487 | 2.117416413 | | ٠ | 50 | 1 | | 0.3987841945 | 4.2378723404 | 0.4154 | • | 0-1400 | 17 | 0.3400 | 1.4000901432 | 2.117416413 | | • | 50
50 | , | 18 | 0.3876682567
0.3751063629 | 4.4235405792
5.0004467621 | 0.4534 | ÷ | 0-1400 | 18 | 0.3400
0.3400 | 1-4400901432 | 2.505094472
2.505004472 | | ï | 50 | i | Ļģ | 0.3700423745 | 5.3714893616 | 0.49 02
0.5244 | ÷ | 0.1400
0.1406 | 10 | 0.3000 | 2.0559965262
2.0559965262 | 2.075927051 | | ٠ | 30 | 1 | 20 | 0.3525835864 | 5.7240729483 | 0.5611 | 7 | 0-1400 | 20 | 0.4000 | 2.0599965262 | 3.220310430 | | • | 50 | | | 0.3450455927 | 4-0491185410 | 0.5990 | • | 0-1200 | 20 | 0.4000 | 2-4010421107 | 3.220510030 | | - | 50
50 | i | 21
22 | 0.3331914 0 93
0.31 29 463 26 2 | 4.4023100303
4.7152503586 | 0.4276
0.45 0 3 | : | 0.1200
0.1200 | 55
51 | 0.42 00
0.44 00 | 2.4010421109
2.4010421109 | 3.561762127 | | ě | 50
50 | Ĭ | 5 | 0.3680764228 | 7.0233347007 | 0.4485 | š | 0.1000 | 22 | 0.4400 | 2.7091185410 | 3.874450459 | | ٠ | 50 | 1 | 23 | 0.2921189752 | 7.3154537559 | 0.7172 | 3 | 0.1000 | 53 | 0.4400 | 2-707[1854]0 | 4-166769431 | | : | 50
50 | i | 24 | 0.2707509335
0.2636561007 | 7.5064046095
7.8500407902 | 0.7437
0.74 7 6 | • | 0.1000 | 24 | 0.4000 | 2.70911 05 410
2.9727744417 | 4.437720364 | | ě | 58 | | 25 | 0.2496743378 | 8.0997351200 | 0.7940 | • | 0.1000
0.0000
0.0000 | 25 | 9.4000
9.5000 | 2.9727744417 | 4.437720344 | | • | 50 | 1 | 26 | 0.2209019999 | 0.3282370626 | 0.8164 | 4 | 0.0000 | 24 | 0.5200 | 2-9727746417 | 4.713076454 | | • | 50
50 | 1 | 27 | 0.2112244 0 07
0.2076201793 | 0.5394615718
8.747 09 07511 | 0.6572
0.6575 | 3 | 0.0406 | 26
27 | 0.5200
0.5400 | 3.1830991313
3.1830991315 | 4.713070654 | | ٠ | 50 | i | 20 | 0.1872340425 | 8.9343247937 | 0.8759 | ž | 0.0400
0.0400
0.0400 | 20 | 0.5600
0.5800 | 3-1639991315 | 5.310799070
5.478237002 | | : | 50
14 | | 29 | 0.1474773034 | 9.1010019973 | 0.0023 | 2 | 0.0000 | 29 | 0.5000 | 3-1039991313 | | | - | 50 | i | 30 | 6.1 562040 014
8.14 050 1957 | 7.2520040776
7.4605000327 | 0.9214 | 2 | 0.0400 | 29 | 9.3000 | 3.3342032131
1.3342032131 | 5.476237062 | | ě | 22 | į | 31 | 0.1304342162 | 1.5364455495 | 0.9344 | i | 0.0400 | ñ | 0.6200 | 3.3342032131 | 5.757173258 | | : | 50 | 1 | 32 | 0.1133025445 | 9.6449247937 | 0.9455
0.9550 | į | 0.0100 | 35 | 0.4440 | 3.3342032131 | 5.870999700 | | : | 94
94 | ì | 33 | 0.0074301241
0.0026747720 | 9.7417629179
9. 82 443 76897 | 0.9631 | 3 | 0.0400
0.0400
0.0400 | 33 | 0.4400
0.4000 | 3.3342632131
3.3342632131 | 5.967993920
6.07046613 | | ٠ | 50 | 1 | | 4.07000000 | 9.9044376099 | 0.9710 | 1 | 0.0200 | 34 | | 3.4142032131 | 4.070440403 | | : | 30 | • | 33 | 0.0071407341 | 0.0716664741 | 0.9778 | | 0.0200 | 35 | 0.6000
0.7000 | 3.414 20 32131 | 4-119017629 | | : | 77 | - 1 | 34
37 | 0.0300776700
0.0460407404 | 19.9704963221 | 0.9633
0.9670 | ; | 0.0200 | 34 | 0.7200
0.7400 | 3-4142032131
3-4142032131 | 4.176717325 | | • | 50 | i | 30 | 0.0340745760
0.0457407424
0.0345004776 | 10.0304043221
10.0744330044
10.1127395422 | 0.9914 | i | 0.0200 | 34 | 6.7000 | 3.4143332131 | 0.22200007
0.22200007 | | • | 30 | ì | 34
39 | 0.0279412198 | 10.1406773773 | 0.9941 | ī | 0.0200 | 34 | 0.7000 | 1.4143653111 | 4.204400300 | | : | 2 | 1 | 40 | 0.0200423793
0.0149944072 | 10.1619197966 | 0.7762 | | 0.0200 | 40 | 0.0200 | 3.4142032131
3.4142032131 | 6.20000000
6.307790790
6.322705367 | | • | 30
30
30
30
30
30
30 | i | 3 | 0.010212700 | 10.1704741041 | 0.9974 | 1 | 6.6204 | 41 | 0.0400 | 3-4/45635131 | 0-332705307 | | ė | 30 | i | 43 | 0.0005347344 | 10.193221044 | | i | 0.0200 | 43 | 0.0000 | 1.4142022131 | 6-339452007 | | er 100 ca 1401 - a. | A STRAIGHT A STRAIGHT A | PE LIN ET LANGE OF | A 0000000 | | |--|---|---
--|--------------------| | | Add Streets Streets | Fig. 1.10 C. Lank. Fig. | • | T. | | 1 | Sing from from flots of has line twent
Singl Guittin 9 70 to to procent count
introduction that South | 023 | | - | | 110 1 100 | initial fine series | 100 × 100 × 100 | , | | | 1 130 2 AND SC
1 250 10 AMBRO SC
1 240 1 A SC | • | TO SAME | | • | | 1 100 2 0100 DE | • | 1 100 1 40001 100 | : | | | 1 200 I Marine of | : | | • | | | | • | 1 100 11 10000 100 | | | | 1 10 2 10 10 10 10 10 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 6 176 31 0000 000
6 190 31 00000 000
6 190 31 0000 000
6 200 31 0000 000
7 000 6 0.0000 000
7 000 6 0.0000 000 | u u | | | 1 100 L 100 E | | T ON S SHOWE SCE | | ₩. | | | | 7 000 6 Manus SCI | ũ | THE REAL PROPERTY. | | | 1 | | ` | = | | 1 040 1 Min 05 | ;
;
;
; | | | = | | 2 576 SEEDON DE | | | | L
PAN | | 2 000 10 DOMES DE
2 100 4 DOMES DE
2 110 0 DOMES DE | 0001 | A ODG I ADGRAF DE | ' | | | 7 170 32 EMPRAL 651
2 190 32 BOTTAN 651 | • | OF LAST K | . : | | | 1 100 1 100 E | : | | | _ | | 2 370 5 66702 6C1
2 190 30 MGCH 6C1
2 200 1 661607 6C | • | | SUR
SUF SUTTONIAL | á | | 2 210 1 PLOST DC | | 0 200 00 00
0 200 00 00
0 100 00 00
0 100 10 00
0 100 11 HEADE 00 | LEFT SUR BUT | | | | | 170 1 00071 NC | 9901 9901 | 15 | | 3 090 30 HBL090 BC | : | | 0001 0001
0007 0007
0007 0007
0002 0007
1 TyTu 0270 | | | 3 000 30 HBLBE 0C | • | | LEFF FUN A OFFICE OFFI | | | 1 120 1 L000 0C | • | anemat Sc | LCAMO & | | | 3 146 26 11763 BCI
3 156 26 12766 BCI
3 186 26 12705 BCI | • | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 0000 \$200
6520 | | | 3 170 30 LEVENS OC | : | | 1 4014 4014
1 4010 101
1 4014 1014 | | | 3 300 20 LEWIS OC | 3UR P | | 257297 AS | | | 3 230 26 660725 OCI
3 240 6 64007 | n sun | 100 Carpes (M | 1 A6601 775725 E | | | 3 350 20 L00710 0CI
3 340 2 LPS 0CI
4 414 5 L0101 ACI | ** ** | | 000 101 | | | 4 030 # LEGRA DE | CONTINUE TEXT DIGGO | | #956 TUSTES
#6 TUSTES
#6 TUSTES | | | MASS SE | • | | 1000 TESTAL
1001 TORTON | | | 1 010 # BANK! BE | • | 1 2 3 Common E | 10 15 MLT +000 | | | | • | | | | | | | | ## 1 | | | | | | 017 -007 MM2 | _ | | | . 1016 115 115 | | | ٠., | | | • | | Ann Will | | | | • | 10 10 10 10 10 10 10 10 | | | | 1 000 21 7404 56 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | : | | | ١. | | | | | | | | | | | | 1 | 11 11 11 | | | | ; | 1 2 2 2 2 | | | 0 | | PG 430 CT | LARGEL B | P 4 005 44HG | 0 0000000 | 0 | PE 438 CT | LAGEL | * | A OFERAM | 1 011440 | • | |---|---|----------|--|----------------------|----|------------------|--------------------|--|--------------------------|---------------------------|---| | 17 246 7 Camp | _ | | | DIV +010 | | 19 130 3 | A1004 ED | ** | Canon A | | | | 7 240 7 Camp 24 Addition Tables 70 7 7 7 7 7 7 7 7 | 12 000 3 | 4 | A 66
963/1 | MAT +804 | | | | PĒ
ŽĀ | ··· | 185724 | | | 17 246 7 Camp | 12 000 7 | | En 917 +919 | esus | | | | 5
6
M | 9C tr1 | 186126
165726 | | | 17 246 7 Camp | 12 000 | | A COMOO
REUM | MAT 4055 | ı | | | 1 h | 2 | • | | | 17 246 7 Camp | 12 130 | i | A COMPS | MALT +001 | | | | EA
ZA | 25.00 | į. | | | 17 246 7 Camp | | | CH MALT +820 | LEVES | | 19 616 7 | | EA
EZ | MASI -001 | MARGE
MARGE | | | 17 246 7 Camp | 12 150 | | REGIO | | | 10 030 | MALTPA | Î.A | COMPRI
MARST | 125724 | | | 17 246 7 Camp | 1 1 100 | | A COMPS | MALT +001 | | 10 000 | | ens | INAME ION
OCAS | 785728
785728 | 4 | | 17 246 7 Camp | 15 65 | | CH MLT +620 | LEVOS | | 19 970 7 | | MCM | MARGT +025 | MALT HOLY | | | 17 246 7 Camp | | | L BOAT 4424 | MALT +B22 | | 19 100 | | 6 | BENT | MAGT +614 | | | 17 246 7 Camp | 11 656 | | IOP COMERS | MULT +002 | | 19 110 6 | | BWE | CHESES
INT LAU | MONEY | • | | 17 246 7 Camp | 13 070 | i ii | ## ##LT +424
| MT1 +005
FEACHT | | 10 100 | MULTING | E# | 101014
101014 | PHILIPPINE. | • | | 17 246 7 Camp | 13 000 | | 180 45141
180 180.7 +020 | MULT +623 | | 10 100 | MANNE NO | 14 | MARS3 | MARST | | | 17 246 7 Camp | 13 110 | COMMIN E | CONTEL. | | | 19 100 | | 14 | 2240 | MAGE | | | 17 246 7 Camp | 14 626 | | A ES | • | | 10 100 | | <u>. </u> | MARK! | 186720 | | | 17 246 7 Camp | 14 840 1 | , , | 14 M016 | έ | | 2000 | | 346 | Finish | PONLY | ī | | 17 246 7 Camp | 14 644 1
24 676 | ; | MAT
MS | ŧ | | | - | | EARTH | ents. | | | 17 246 7 Camp | 14 900 | | A MS. | • | _ | IEE : | | MCM | MA.7 +914 | PRODUCT
PRODU | | | 17 246 7 Camp | 14 100 | | INT WEND! | • | i | 122 | | MCW
EA | MAT +019 | PROOFI
313923 | | | 17 246 7 Camp | 14 120
24 130 | | HE WEND! | <u>.</u> | ì | | } | ŽĀ | 22 AC | SUMPL | | | 17 246 7 Camp | 14 140 | | • | 5 | | | ; | E CA | 180721-005
SUMP21-005 | 0237
0237 | | | 17 246 7 Camp | 10 100 | | | = | | | ; | LCA | LEGT21-005
SUNF21-005 | 0255
0255 | | | 17 246 7 Camp | 10 100 | | | MAG1 | | 2 100 | ; | HCS
HCS | MD 26 | 6264
6264 | | | 17 246 7 Camp | 35 910 | | | NAME ? | | 2 12 | | SCA. | PČ1 -005
0101 | | | | 17 246 7 Camp | 25 000 | | a A | MARKS
MARKS | | 21 010 | ; | HCE
LCA | #047
PCT -005 | 021 0
021 4 | | | 17 246 7 Camp | | | | HARGA
HARGA | | 21 012 | 3 | HCE
1 | 10 10
10 10 | 6214 | | | 17 246 7 Camp | 12 22 | | RZ NARS1 -001 | MARSE
MARKE | | 21 021 | COMP | NC II | \$500
\$100771-007 | 914 -932
914 -932 | | | 17 246 7 Camp | 25 000 | | NZ MARG: -001 | RANGS
RANGA | | 21 029
21 024 | ; | 92 | 82An -004
BIA -051 | OTA +OTS
BIA +OTS | | | 17 246 7 Camp | 15 110 | | EA A | MAT +003
MAT +003 | | 21 026 | | FCV | 961
961 | | | | 17 246 7 Camp | 15 130 | | DOL CAD
HEN DWOOD) | MLT +003 | • | 21 027
21 026 | | Ç | 914 -000 | 4204 | | | 17 246 7 Camp | 15 190
15 100 | 7 084 | ta 6
6 OCH1 | MAT +003 | _ | 21 ON | 351 111 | • | | | | | 17 246 7 Camp | 25 170 | ; | BUE CAC
NCV BURGOT | MALT +003 | • | 211000 | PENEN | 100 | PURCHS | 01.607 | £ | | 17 246 7 Camp | 15 100 | T CAC | EA C | MA.T +003 | _ | | | 7 | 2016 | LINATE LANGE | | | 17 246 7 Camp | 36 620 | , | DELL CARD | E . | • | | į | Ā | | Lingist | | | 17 246 7 Camp | 35 046 | CAS | S OCUL | 100 mg. | _ | | į | Ã | ecui
Mare | LOCKE | | | 17 246 7 Camp |
14 000 | | | | • | # 166
176 | į | į | 2016
2016 | LOCKS
LOCKS | | | 17 246 7 Camp | | 7 | | 9000 | | 31 300 | į | å | M. | reens
reens | | | 17 246 7 Camp | 12.22 | 20071 | | | | 1 11 | 7 | A. | MD 16 | rates
rates | | | 17 246 7 Camp | | | | | 1 | # 65 | ; | ME | ecni
ela +ess | 017 +627
Names | | | 17 246 7 Camp | | , man | NEW MARK T | MARCY
MARC # | | # ## · | • | ŞA | mii
mii | | | | 17 246 7 Camp | 11 114
14 170 | 7 COMP14 | E MANY | RAAA 1.
DURTO | | | • | \$. | NI
NI | | | | 17 246 7 Camp | 94 186
94 198 | • | a Appil
A Stud | 9075 | ٠ | | į | - | <u> </u> | | | | 17 246 7 Camp | 14 200 | : | C GOOM | Pu000 | • | | į | Ē | | | | | 17 246 7 Camp | 17 000
17 000 | ; | S SCHI | 795726
785726 | _ | | | į | ALLET | | | | 17 246 7 Camp | 17 000 | · ' | IA SCHO | TUSTAL
ALCOL | • | | | ≝ | entin. | LAST | ł | | 17 246 7 Camp | 17.00 | | | 78572E | | | <u>;</u> | 100 | | TESTRE
TESTRE | • | | 17 246 7 Camp | | · | | 104154
104154 | • | | • | řet | derick
Courts | 105100 | | | 17 246 7 Camp | # i i i i i i i i i i i i i i i i i i i | ; — | Le | 196136
196136 | | 1 H 000 | - | . jut | | LAST | 1 | | 17 160 | 17 126 | · | 24 2004 | | - | H 32 433 | - | | 100
100 15 | LONG | ı | | | | : — | | 105120
105120 | • | | 7 100 | * | | | | | | 17 130 | 7 | 4 24 | MARCH
FRANKT | | | | <u>.</u> | 20 | | _ | | | # 12 | ; | | 917 +019
917 +010 | | | | | omitte
omitte | 100100 | • | | | # 22 | 7 00074 | e marke | MARCH
PARCE | | | , -7101 | | | | | | | # 555 | • | ; <u>;</u> | 917 +996 | ı. | 12 12 | | 6 | | 21 32 | | | | | 2 | M | - 1 · 410 | | | į | *** | 37 :::: | 恶 歪 | | | | | į | | | _ | | į | ī | | | | | | 1 2 22 | - | F 27 | | • | 12 12 | į | ř | E 321 | Mr +481 | | | | 5 12 | ; | <u> </u> | | | 1 K KK | <u> </u> | ě, | M : 44 | | | | U | |----| | U | | [q | | U | | Q | | Q. | | Q | | I | | I | | | | | | | | 1 | | I | | I | | | | M 110 C | T LANGE | | A OPERAND | | • | M LM C | U LAGEL | - | A SPERANS | 1 0/71/4/10 | | |--|---|--|--
--|---|---|--|---|--|---|---| | | 7 | - 2000 | PATE OFFI PROBLEM PROB | May 1 - 654
May 1 - 644
Prignal
Print 1988
Suntak | | # 4#
| ; | £11 | LASTA
ASSUTA | LASTL
LASTE
PLAST
AFTINGS
AFTINGS | | | 122 | Ì | 2 | Maya
Mara | Print Pale
Departure | | 22 | ļ | CH
CH | #1900
#1990 | PLEFT
AFTIGE
AFTIGE | | | | į | | MALT HATT
MALT HATT | | | | : | 60
60
60
60
60
60
60
60
60
60
60
60
60
6 | #71005
#71000 | 101111 | _ | | | • | i | acui
acui
acui | PARTICIONAL PARTIC | | | PORMA | <u>.</u> . | LABTE THEORY PELOPE ANTON ANTO | | • | | | • | - | disti
Libri | PAS GART | L | 2 m | - | i | SCHI
BOME
BOME! | MS. | | | # iii | wm | int | Migure
Chira | Lem | ı | P 071 | 7 MGHALF
7 | REN
REN | MANA
MA | 917 -985
914 -989 | | | 2 | 90716
90270. | en en | Aleurre
Press | lastl
Testae
Testae
Testae | ı | 22 674
24 676 | | ES
ES
A
B
EA
MCH
B
EA
MCH | BLY +005
Coming | 105120 | | | | : | int | PROBL
LRPTE
ATANES | | | 2 55 | COME | | MATERIAL STATES | 105 100
105 100 | | | # 644
694 | i comple | ent
L | LEFTE
PROOL | Lasto
Testes
Testes
Testes | 1 | 77 100 | | i | | | • | | | Arimo | į | Algerte
LEFTE | 765726 | • | 20 110 | | ě. | | | • | | 37 136
37 136
37 436 | - TERM | 2 | Philipst
Bhocan
Blasts | LASTL
Laste | 1 | F (# | - | EA. | 2000 | COMM | • | | 2 55 | ; | * | ACU1 | Lastl
Land
Taster
Taster
Testes | | | !
?
! | | HEADS | 0092 | | | # 55 | - | | CHATL
SHO | LASTS | 1 | 99 137
99 439 | | Č | 0032 | | | | # 900
901
902 | • | i | GNO
GNO
Al GNTS | Remo | ı | 2 13 | mmı | NC.N | LASTPR | 033.2 | 1 | | # 50 | 1 000 | a a a a a a a a a a a a a a a a a a a | LASTL | LMSTL | | # 614
22 (04 | MANUE
Alders | | A2 50/Th | | | | # 150
150 | CONTR. | * | LOGNI
SCUI | 79672 0
796720
796780 | _ | 4 60 | 7 | MCM
MCM | PAGES
SHATTAL | PAGENT,
MALTIN,
SAME OF | | | # 35 | moss | 1 | COUPLE | TRETTE
LASTL | • | 4 61 | F
T
T
T
C
C
LESTS
T | ÄCH | 12 meru
Prante
Ona Tita
Prante
Cori
Man Tita
Man | PARTON,
MINATIVE,
SUSPERI
PROTES
MINATE
SUSPERI
SUSPERI | | | # W | - | 4 | Orocan
Linuts
Linuts | Pol.7 +004 | | | | | PRTS | SMITTER | | | 7 500 | 7 | EA
BCS | 2000
Mal 7 +010
817 +017 | Mal? +004
Mal? +010
DIV +005
DIV +005
DIV +006
Mal? +006
Mal.? +010 | | 4 57 | LEFTE
7 | | PARTY. | PROPERTY. | | | 77 636 | į | ZA. | rees
rees | | | 4 22 | | 1 | PRODE. | MATEL
MATEL | | | 2 33 | • | 60
60
60 | MAT -019
MAT -019
MAT -001 | DIA +OFF | | 3 33 | | | PRODE. | PARENT
MATTHE
SUMPER
MATTE
MATTHE
SUMPE
THE THE | | | # SE | •
•
•
•
•
•
• | 1 | MY +624
MADL |
RET +004 | | 4 33 | . | = | 600) | | 3 | | | į | | SURFE
MALT +027
MALT +027 | DIV +DIL RULY +DIA RULY +DIA PROBL DUMPL PROBL DUMPL RUAFIL LUGHE LUGH | • | 4 24 | | A A B C C C C C C C C C C C C C C C C C | HEADS
ANDS | 6335 | | | | ļ | 3 | MATL
MATL
MENT | THE PLANE | 1 | 2 10 | į | | esse
ecue
ecue
ecue
entr
unr
comi
esse
esse
esse
esse
esse
esse
esse
es | 1100
1100 | | | | ; | į | acui
Acui | LOGICE
LABORE | | | | | | 1100
5100 | | | 2 13 | į | int | ACMI
LEP TO | | 1 | 4 20 | | 22 | COMI | | | | | ~ | im | LEFTE
COMPLE | LASTR | ı | 47 614
47 600 | am | C1 | | | | | 2 55 | | i i | LASTPR | 8286 | ı | 4 2 | ETLEME | Ī | SCU1
SOACE | COMMIT | • | | | <u> </u> | Es. | | | | 4 5 | s Kil | <u>.</u> | PENEN
PENEN
0001 | | | | 17 616
17 616 | LASTAL
7 PRTI | ICA
MCF | (20133-005 | 4295
4295 | | # 10 | 7 LIMBET | 1 | BCV)
BCT
Collect | COUNT | • | | 77 990
37 990
57 990 | ļ | I CT
IICI
I CT | 180771-005
SURPL -005
LEGTZ1-006 | 4311
4311 | | 4 14 | MOCT
MOD
7 LEVEL | E | CHRICK
GREAT | a martin | 4 | | ## · | į | 뫮 | MATHE | 4000
4217 | | | - | į | eneca
enti | CANTS -662 | • | | ## 000 100 | į | SHE DE SE LA COLOR | Color Color Color | 4199 4299 9311 9321 9321 9322 9323 9324 9329 9329 9329 9329 9329 | | # 000 # | 100 | | COMPLET SENS SENS SENS SPACE PRINCIP PRINCIP PRINCIP SENS SENS SENS SENS SENS SENS SENS SEN | | • | | 97 136
97 146 | <u> </u> | Ŧ | 617 -617
9516 | 817 +012
817 +000
817 +000
917 +005 | | | 57 0 | <u>.</u> | 6833 | | | | 97 190
97 100
97 170 | ; | | 967
967 +967 | 0203
0203
0414 4414 | | | | | 4000 | comi | • | | 97 100
97 190 | į | | M17 -007 | 92A +989
92A +989
92A +963
91A +973
9163 | | | - | (ECI) | HEART
HEART IN | ess2 | | | 97 230
97 300 | į | | RET
BEV +007 | | | | į | Ž. | 6612 | | | | F7 250
F7 240
F7 250 | ; | ** | 867 -000
667 -000
10070
100721-000 | 1000 - 00 | | | - | ä | 0002 | | | | 97 300
97 370 | ****** | MEE
EA | 11111-111
1111 | 9997
1017 | | | į | 遊 | | | | | # FF | | me . | | 014 -075
514 -050
044 -050
064 -051 | | | į | 遊 | 型型 | | | | | | | 617 -015
617 -016
617 -016
617 -015
617 -015 | 221 | | | į | 5 | *** | | 1 | | 37 386
37 380
37 380
38 380
38 380
38 380
38 380
38 38 38 38 38 38 38 38 38 38 38 38 38 3 | | ACE LEAS TO LE | ATT | | • | | en pos | - 00 - 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 3 | | | CHIPCH | ļ., | LEGGET
REGIST | 110071 | | 22 | | ľ | 0001 | | ł | | # ## T | - | ě. | 41 | LOND | , | *************************************** | | E | | | ; | | | | | | | Ì | | 107 14405 | | | | | | | | | | | _ | | ضبحب | _ | | | - | D - 3 #### U. S. NAVAL AMMUNITION DEPOT OAHU. HAWAII 1804:sm 5220/NT 3 Jan 1963 From: Commanding Officer To: Chief, Bureau of Naval Weapons (FQ-1) Department of the Navy Washington 25, D.C. Subj: Tables of the Hypergeometric Distribution Functions Encl: - (1) Mathematical derivation of the tables - (2) Tables of point and cumulative probabilities for various sample and population size combinations - 1. Enclosures (1) and (2) are forwarded for publication by the U. S. Government Printing Office. Enclosure (1) contains mathematical derivation of the hypergeometric distribution function, tables, graphs and IBM 1401 computer program. Enclosure (2) (forwarded under separate cover) contains two copies of the tabulations of the hypergeometric probabilities. - 2. The tables, which include point and cumulative probabilities are designed primarily for use by personnel familiar with statistics to estimate stockpile quality level. - 3. Copy addressees are advised that copies of the tabular presentation, enclosure (2), which are quite voluminous cannot be made available by this command. It is presumed that they will be generally available through the Bureau of Naval Weapons or the Government Printing Office if the Bureau of Naval Weapons decides to have them published. H. H. MEEKER, JR. By direction Copy to: Distribution list (w/o encl (2))